Generation of isogenic pluripotent stem cells.
نویسنده
چکیده
The ability to reprogram somatic cell nuclei back into a pluripotent epigenetic state provides exciting new possibilities for in vitro research and cell transplantation therapy. There has been a significant quantity of recent research studies demonstrating that this epigenetic reprogramming process is possible with human and non-human primate somatic cells. In this review, various methodologies for reprogramming primate somatic cells into pluripotent stem cells are examined, epigenetic reprogramming following somatic cell nuclear transfer and normal primate embryonic development is compared, and future potential methods to induce direct reprogramming without using genetic modification are discussed.
منابع مشابه
A Quick update from the Past to Current Status of Human Pluripotent Stem Cell-derived Hepatocyte culture systems
Pluripotent stem cells (PSCs) may be offered as an unlimited cell source for the hepatocyte generation. The generation of hepatocytes from stem cells in vitro would provide an alternative cell source for applications in drug discovery and cell transplantation. In this review, we discuss different approaches to generate pluripotent stem cell-derived hepatocytes, advantages, limitations for each ...
متن کاملارزیابی روشهای تولید سلولهای بنیادی پرتوان ـ مروری کوتاه
Background and Objectives: Nowadays, cell therapy is one of the most important and promising strategies in the treatment of diseases. Unique capabilities of stem cells caused them to be used in both research and treatment as a valuable resource in basic science and medical researches. The use of stem cells has been limited due to the related ethical problems. One of the major concerns of sci...
متن کاملSpecification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells
Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملSpermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine
Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....
متن کاملDifferentiation of Human Pluripotent Stem Cells into Mesodermal and Ectodermal Derivatives Is Independent of the Type of Isogenic Reprogrammed Somatic Cells
Induced pluripotent stem cells (iPSCs) have the capacity to unlimitedly proliferate and differentiate into all types of somatic cells. This capacity makes them a valuable source of cells for research and clinical use. However, the type of cells to be reprogrammed, the selection of clones, and the various genetic manipulations during reprogramming may have an impact both on the properties of iPS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 17 R1 شماره
صفحات -
تاریخ انتشار 2008